Format

Send to

Choose Destination
See comment in PubMed Commons below
J Exp Biol. 2002 May;205(Pt 9):1189-97.

Buoyancy and maximal diving depth in penguins: do they control inhaling air volume?

Author information

  • 1National Institute of Polar Research, 1-9-10 Kaga, Itabashi, Tokyo 173-8515, Japan.

Abstract

Using a newly developed data logger to measure acceleration, we demonstrate that free-ranging king and Adélie penguins only beat their flippers substantially during the first part of descent or when they were presumed to be chasing prey at the bottom of dives. Flipper beating stopped during the latter part of ascent: at 29+/-9 % (mean +/- S.D.) of dive depth (mean dive depth=136.8+/-145.1 m, N=425 dives) in king penguins, and at 52+/-20 % of dive depth (mean dive depth=72.9+/-70.5 m, N=664 dives) in Adélie penguins. Propulsive swim speeds of both species were approximately 2 m s(-1) during dives; however, a marked increase in speed, up to approximately 2.9 m s(-1), sometimes occurred in king penguins during the passive ascending periods. During the prolonged ascending, oblique ascent angle and slowdown near the surface may represent one way to avoid the potential risk of decompression sickness. Biomechanical calculations for data from free-ranging king and Adélie penguins indicate that the air volume of the birds (respiratory system and plumage) can provide enough buoyancy for the passive ascent. When comparing the passive ascents for shallow and deep dives, there is a positive correlation between air volume and the depth of the dive. This suggests that penguins regulate their air volume to optimize the costs and benefits of buoyancy.

PMID:
11948196
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk