Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2002 Apr 9;41(14):4655-68.

Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.

Author information

  • 1Department of Biological Chemistry, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.


Escherichia coli GDP-mannose mannosyl hydrolase (GDPMH), a homodimer, catalyzes the hydrolysis of GDP-alpha-D-sugars to yield the beta-D-sugar and GDP by nucleophilic substitution with inversion at the C1' carbon of the sugar [Legler, P. M., Massiah, M. A., Bessman, M. J., and Mildvan, A. S. (2000) Biochemistry 39, 8603-8608]. GDPMH requires a divalent cation for activity such as Mn2+ or Mg2+, which yield similar kcat values of 0.15 and 0.13 s(-1), respectively, at 22 degrees C and pH 7.5. Kinetic analysis of the Mn2+-activated enzyme yielded a K(m) of free Mn2+ of 3.9 +/- 1.3 mM when extrapolated to zero substrate concentration (K(a)Mn2+), which tightened to 0.32 +/- 0.18 mM when extrapolated to infinite substrate concentration (K(m)Mn2+). Similarly, the K(m) of the substrate extrapolated to zero Mn2+ concentration (K(S)(GDPmann) = 1.9 +/- 0.5 mM) and to infinite Mn2+ concentration (K(m)(GDPmann) = 0.16 +/- 0.09 mM) showed an order of magnitude decrease at saturating Mn2+. Such mutual tightening of metal and substrate binding suggests the formation of an enzyme-metal-substrate bridge complex. Direct Mn2+ binding studies, monitoring the concentration of free Mn2+ by EPR and of bound Mn2+ by its enhanced paramagnetic effect on the longitudinal relaxation rate of water protons (PRR), detected three Mn2+ binding sites per enzyme monomer with an average dissociation constant (K(D)) of 3.2 +/- 1.0 mM, in agreement with the kinetically determined K(a)Mn2+. The enhancement factor (epsilon(b)) of 11.5 +/- 1.2 indicates solvent access to the enzyme-bound Mn2+ ions. No cross relaxation was detected among the three bound Mn2+ ions, suggesting them to be separated by at least 10 A. Such studies also yielded a weak dissociation constant for the binary Mn2+-GDP-mannose complex (K1 = 6.5 +/- 1.0 mM) which significantly exceeded the kinetically determined K(m) values of Mn2+, indicating the true substrate to be GDP-mannose rather than its Mn2+ complex. Substrate binding monitored by changes in 1H-15N HSQC spectra yielded a dissociation constant for the binary E-GDP-mannose complex (K(S)(GDPmann)) of 4.0 +/- 0.5 mM, comparable to the kinetically determined K(S) value (1.9 +/- 0.5 mM). To clarify the metal stoichiometry at the active site, product inhibition by GDP, a potent competitive inhibitor (K(I) = 46 +/- 27 microM), was studied. Binding studies revealed a weak, binary E-GDP complex (K(D)(GDP) = 9.4 +/- 3.2 mM) which tightened approximately 500-fold in the presence of Mn2+ to yield a ternary E-Mn2+-GDP complex with a dissociation constant, K3(GDP) = 18 +/- 9 microM, which overlaps with the K(I)(GDP). The tight binding of Mn2+ to 0.7 +/- 0.2 site per enzyme subunit in the ternary E-Mn2+-GDP complex (K(A)' = 15 microM) and the tight binding of GDP to 0.8 +/- 0.1 site per enzyme subunit in the ternary E-Mg2+-GDP complex (K3 < 0.5 mM) indicate a stoichiometry close to 1:1:1 at the active site. The decrease in the enhancement factor of the ternary E-Mn2+-GDP complex (epsilon(T) = 4.9 +/- 0.4) indicates decreased solvent access to the active site Mn2+, consistent with an E-Mn2+-GDP bridge complex. Fermi contact splitting (4.3 +/- 0.2 MHz) of the phosphorus signal in the ESEEM spectrum established the formation of an inner sphere E-Mn2+-GDP complex. The number of water molecules coordinated to Mn2+ in this ternary complex was determined by ESEEM studies in D2O to be two fewer than on the average Mn2+ in the binary E-Mn2+ complexes, consistent with bidentate coordination of enzyme-bound Mn2+ by GDP. Kinetic, metal binding, and GDP binding studies with Mg2+ yielded dissociation constants similar to those found with Mn2+. Hence, GDPMH requires one divalent cation per active site to promote catalysis by facilitating the departure of the GDP leaving group, unlike its homologues the MutT pyrophosphohydrolase, which requires two, or Ap4A pyrophosphatase, which requires three.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk