Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Res Q Exerc Sport. 2002 Mar;73(1):66-72.

Prediction of maximum oxygen consumption from walking, jogging, or running.

Author information

  • 1Department of Physical Education at Brigham Young University, Provo, Utah 84602, USA.

Abstract

The purpose of this study was to develop a submaximal, 1.5-mile endurance test for college-aged students using walking, jogging, or running exercise. College students (N = 101: 52 men, 47 women), ages 18-26years, successfully completed the 1.5-mile test twice, and a maximal graded exercise test. Participants were instructed to achieve a "somewhat hard" exercise intensity (rating of perceived exertion = 13) and maintain a steady pace throughout each 1.5-mile test. Multiple linear regression generated the following prediction equation: VO2 max = 65.404 + 7.707 x gender (1 = male; 0 =female) - 0.159 x body mass (kg) - 0.843 x elapsed exercise time (min; walking, jogging orrunning). This equation shows acceptable validity (R = .86, SEE = 3.37 ml x kg(-1) min(-1)) similar to the accuracy of comparable field tests, and reliability (ICC = .93) is also comparable to similar models. The statistical shrinkage is minimal (R(press) = 0.85, SEE(press) = 3.51 ml x kg(-) x min(-1)); hence, it should provide comparable results when applied to other similar samples. A regression model (R =.90, and SEE = 2.87 ml x kg(-1) min(-1)) including exercise heart rate was also developed: VO2 max = 100.162 +/- 7.301 x gender(1 = male; 0 =female) - 0.164 x body mass (kg) - 1.273 x elapsed exercise time -0.156 x exercise heart rate, for those who have access to electronic heart rate monitors. This submaximal 1.5-mile test accurately predicts maximal oxygen uptake (VO2max) without measuring heart rate and is similar to the 1.5-mile run in that it allowsfor mass testing and requires only a flat, measured distance and a stopwatch. Further, it can accommodate a wide range of fitness levels (from walkers to runners).

PMID:
11926486
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk