Format

Send to:

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2002 Mar 15;74(6):1402-7.

A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies.

Author information

  • 1Cambridge University Chemistry Department, UK.

Abstract

We report the design and first applications of a tandem mass spectrometer (a quadrupole time-of-flight mass spectrometer) optimized for the transmission and analysis of large macromolecular assemblies. Careful control of the pressure gradient in the different pumping stages of the instrument has been found to be essential for the detection of macromolecular particles. Such assemblies are, however, difficult to analyze by tandem-MS approaches, because they give rise to signals above m/z 3,000-4,000, the limit for commercial quadrupoles. By reducing the frequency of the quadrupole to 300 kHz and using it as a narrow-band mass filter, we show that it is possible to isolate ions from a single peak at m/z 22,000 in a window as narrow as 22 m/z units. Using cesium iodide cluster signals, we show that the mass range in the time-of-flight (TOF) analyzer extends beyond m/z 90,000, in theory to more than m/z 150,000. We also demonstrate that the resolution of the instrument is greater than 3,000 at m/z 44,500. Tandem-MS capabilities are illustrated by separating components from heterooligomeric assemblies formed between tetrameric transthyretin, thyroxine, retinol-binding protein, and retinol. Isolation of a single charge state at m/z 5,340 in the quadrupole and subsequent collision-induced dissociation (CID) in the gas-filled collision cell leads to the formation of ions from individual subunits and subcomplexes, identified by their mass and charge in the TOF analyzer.

PMID:
11922310
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk