Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4227-32. Epub 2002 Mar 26.

Paranodal junction formation and spermatogenesis require sulfoglycolipids.

Author information

  • 1Department of Biochemistry, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.

Abstract

Mammalian sulfoglycolipids comprise two major members, sulfatide (HSO3-3-galactosylceramide) and seminolipid (HSO3-3-monogalactosylalkylacylglycerol). Sulfatide is a major lipid component of the myelin sheath and serves as the epitope for the well known oligodendrocyte-marker antibody O4. Seminolipid is synthesized in spermatocytes and maintained in the subsequent germ cell stages. Both sulfoglycolipids can be synthesized in vitro by using the isolated cerebroside sulfotransferase. To investigate the physiological role of sulfoglycolipids and to determine whether sulfatide and seminolipid are biosynthesized in vivo by a single sulfotransferase, Cst-null mice were generated by gene targeting. Cst(-/-) mice lacked sulfatide in brain and seminolipid in testis, proving that a single gene copy is responsible for their biosynthesis. Cst(-/-) mice were born healthy, but began to display hindlimb weakness by 6 weeks of age and subsequently showed a pronounced tremor and progressive ataxia. Although compact myelin was preserved, Cst(-/-) mice displayed abnormalities in paranodal junctions. On the other hand, Cst(-/-) males were sterile because of a block in spermatogenesis before the first meiotic division, whereas females were able to breed. These data show a critical role for sulfoglycolipids in myelin function and spermatogenesis.

PMID:
11917099
[PubMed - indexed for MEDLINE]
PMCID:
PMC123630
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk