Display Settings:

Format

Send to:

Choose Destination
J Neurochem. 2002 Feb;80(3):531-8.

Mitochondrial permeability transition and calcium dynamics in striatal neurons upon intense NMDA receptor activation.

Author information

  • 1Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, New York 14642, USA.

Abstract

Deregulation of the intracellular Ca2+ homeostasis by NMDA receptor activation leads to neuronal cell death. Induction of the mitochondrial permeability transition pore (MPT) by Ca2+ is a critical event in mediating cell death. In this study, we used fluorescent Ca2+ indicators to investigate the effect of high concentrations of NMDA on cytosolic and mitochondrial Ca2+ concentrations ([Ca2+]c and [Ca2+]m, respectively) in cultured striatal neurons. Exposure to NMDA resulted in an immediate, sustained increase in [Ca2+]c followed by a secondary increase in [Ca2+]c. This second increase of [Ca2+]c was prevented by pretreatment with N-methyl-valine-4-cyclosporin (NMV-Cys). Exposure of neurons to NMDA also resulted in an increase in [Ca2+]m that was followed by a precipitous decrease in the rhod-2 signal. This decrease followed the time frame of the secondary increase in [Ca2+]c. Preincubation of the neurons with NMV-Cys prevented the decrease in rhod-2 fluorescence. These dynamic changes in the rhod-2 signal and [Ca2+]m in response to NMDA were confirmed by using confocal microscopy. The presented results indicate that MPT can be detected in living neurons using fluorescent Ca2+ indicators, which would allow the study of the physiological role of MPT in cell death.

PMID:
11905998
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk