Format

Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Cell Biol. 2002 Feb;81(2):61-8.

Distinct cell type-specific expression of scaffolding proteins EBP50 and E3KARP: EBP50 is generally expressed with ezrin in specific epithelia, whereas E3KARP is not.

Author information

  • 1Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.

Abstract

The ezrin/radixin/moesin (ERM) proteins are regulated microfilament membrane linking proteins. Previous tissue localization studies have revealed that the three related proteins show distinct tissue distributions, with ezrin being found predominantly in polarized epithelial cells, whereas moesin is enriched in endothelial cells and lymphocytes. EBP50 and E3KARP are two related scaffolding proteins that bind to the activated form of ERM proteins in vitro, and through their PDZ domains to the cytoplasmic domains of specific membrane proteins, including the Na+/H+ exchanger isoform (NHE3) present in kidney proximal tubules and the beta2-adrenergic receptor. Using specific antibodies to EBP50 and E3KARP for localization in murine tissues, we find that the cellular distribution of EBP50 and E3KARP is mutually exclusive. Epithelial cells expressing ezrin generally co-express EBP50, such as intestinal epithelial cells, gastric parietal cells, the epithelial cells of the kidney proximal tubule, the terminal bronchiole of the lung, and in mesothelia. This correlation is not absolute as cells of the mucous epithelium of the stomach and in the renal corpuscle, express ezrin but no detectable EBP50, whereas the bile canaliculi of hepatocytes express EBP50 and not ezrin. E3KARP has a restricted tissue distribution with the highest expression being found in lung. It is largely colocalized with moesin and radixin, especially in the alveoli of the lung, as well as being highly enriched in the renal corpuscle. These results document a preference for co-expression of EBP50, but not E3KARP, with ezrin in polarized epithelia. These results place constraints on the physiological roles that can be proposed for these scaffolding molecules.

PMID:
11893083
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk