Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 May 17;277(20):18229-37. Epub 2002 Mar 11.

Inhibition of collagen alpha 1(I) expression by the 5' stem-loop as a molecular decoy.

Author information

  • 1Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA. stefbra@med.unc.edu

Abstract

Collagen alpha1(I) mRNA is posttranscriptionally regulated in hepatic stellate cells (HSCs). Binding of protein factors to the evolutionary conserved stem-loop in the 5'-untranslated region (5' stem-loop) is required for a high level of expression in activated HSCs. The 5' stem-loop is also found in alpha2(I) and alpha1(III) mRNAs. Titration of the 5' stem-loop binding factors by a stably expressed RNA containing the 5' stem-loop (molecular decoy) may decrease the expression of these collagen mRNAs. We designed a 108-nt RNA that is transcribed from the optimized mouse U7 small nuclear RNA gene and contains the 5' stem-loop (p74WT decoy). This decoy accumulates in the nucleus and in the cytoplasm. When expressed in NIH 3T3 fibroblasts, the p74WT decoy decreased collagen alpha1(I) mRNA level by 60% and decreased collagen type I secreted into the cellular medium by 50%. We also expressed this decoy in quiescent rat HSCs by adenoviral gene transfer. Quiescent HSCs undergo activation in culture, resulting in a 60-70-fold increase in collagen alpha1(I) mRNA. The decoy decreases collagen alpha1(I) mRNA expression by 50-60% during activation of HSCs. It also decreases collagen alpha2(I) mRNA expression and collagen alpha1(III) mRNA expression. The cellular levels of collagen alpha1(I) propeptide and of disulfide-bonded collagen type I trimer are reduced by 70%. However, the p74WT decoy did not decrease alpha smooth muscle actin protein or the mRNA levels of glyceraldehyde-3-phosphate dehydrogenase and interleukin-6. The p74WT decoy was also introduced into activated human HSCs. In these cells, the decoy decreased collagen alpha1(I) propeptide and disulfide-bonded collagen trimer by 50-60%. These results indicate that the 5' stem-loop specifically regulates fibrillar collagen synthesis and represents a novel target for antifibrotic therapy. The molecular decoys provide a generalized method of assessing the functional significance of blocking the interactions of mRNA and proteins.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk