Display Settings:

Format

Send to:

Choose Destination
Metabolism. 2002 Mar;51(3):292-6.

Serum leptin concentrations in children with type 1 diabetes mellitus: relationship to body mass index, insulin dose, and glycemic control.

Author information

  • 1Department of Pediatrics, College of Medicine, University of Alexandria, Loran, Alexandria, Egypt.

Abstract

Although obesity is a frequent feature of type 2 diabetes mellitus (DM), many patients with type 1 DM are prone to high body mass index (BMI). We measured serum leptin concentrations in a cohort of children (n = 55) with type 1 diabetes mellitus (DM), as well as their anthropometric parameters including BMI, skin fold thickness at multiple sites, and midarm circumference. Glycemic control was assessed by blood glucose (BG) monitoring before meals, and measurement of glycated hemoglobin (HbA1c) and insulin dose/kg/d was recorded. Dietary evaluation and assessment of caloric intake (kg/d) was performed by an expert dietitian. In the newly diagnosed children (n = 10) before initiation of insulin therapy, circulating leptin concentration was significantly lower (1.1 +/- 0.8 ng/dL) versus 5 days after insulin therapy (1.45 +/- 0.7 ng/dL). The decreased leptin level appears to be related to insulinopenia in these patients. In 45 children with type 1 DM on conventional therapy (2 doses of insulin mixture (NPH and regular) subcutaneous (SC) before breakfast and dinner for more than 2 years), serum leptin concentration was significantly higher (2.15 +/- 1 ng/dL) compared with age-matched normal children (1.3 +/- 1 ng/dL). Diabetic children were further divided into 2 groups according to their HbA1c level: group 1 with HbA1C less than 7.5% (less than 2 SD above the mean for normal population) (n = 29) and group 2 with HbA1c greater than 7.5%. (greater than 2 SD above the mean for normal population) (n = 16). Patients with a higher HbA1c level (group 2) had a higher leptin concentration (2.3 +/- 0.8 ng/dL), higher BMI (17.8 +/- 1.7), and were receiving higher insulin dose/kg (0.92 +/- 0.2 U/kg/d) compared with group 1 (lower HbA1c) (1.78 +/- 0.8 ng/dL, 16.7 +/- 1.5, and 0.59 +/- 0.2 U/kg/d, respectively). Group 2 patients had a higher incidence of late morning hypoglycemia (9/29) versus group 1 patients (2/16). Analysis of dietary intake showed that patients with a higher HbA1c (group 2) consumed more calories (73.5 +/- 10.5 kcal/kg/d) versus patients with lower HbA1c (64.2 +/- 8.7 kcal/kg/d). These findings pointed to the unphysiologic nature of injecting a mixture of insulin twice daily. To cover the relatively big lunch meal (40% to 50% of the total caloric intake in the Arab countries) and prevent afternoon hyperglycemia, there is a great tendency to increase NPH dose before breakfast. This, in turn, induces late-morning hypoglycemia and increases appetite and food intake at that time. Multiple regression analysis showed that circulating leptin concentrations (the dependent variable) were best correlated with the mean skinfold thickness (SFT), BMI, and caloric intake/kg/d (together they explained 65% of the variability in leptin concentrations). It appears that oversubstitution by insulin and increased food intake stimulate fat synthesis and subsequently BMI. Increased appetite and BMI contribute to increased leptin secretion and explains the higher leptin levels in undercontrolled diabetic children (higher circulating HbA1c concentrations) who were oversubstituted by insulin.

Copyright 2002 by W.B. Saunders Company

PMID:
11887162
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk