Display Settings:

Format

Send to:

Choose Destination
Brain Res. 2002 Mar 15;930(1-2):150-62.

Mu and delta opioid receptor-like immunoreactivity in the cervical spinal cord of the rat after dorsal rhizotomy or neonatal capsaicin: an analysis of pre- and postsynaptic receptor distributions.

Author information

  • 1Department of Anatomy, W.M. Keck Foundation Center for Integrative Neuroscience, University of California-San Francisco, San Francisco, CA 94143, USA.

Abstract

Opioid compounds have powerful analgesic properties when administered to the spinal cord. These effects are exerted through mu and delta opioid receptors, and both pre- and postsynaptic mechanisms have been implicated. To specifically address the relative pre- and postsynaptic contribution to spinal opioid analgesia, we have quantitatively assessed the pre- vs. postsynaptic distribution of the mu-opioid (MOR-1, MOP(1)) and delta-opioid receptors (DOR-1, DOP(1)). We also examined the rostro-caudal arborization of MOR-1 and DOR-1 immunoreactive primary sensory neurons, using an isolated dorsal root preparation. These results were compared to those obtained by labeling for calcitonin gene-related peptide (CGRP), a neuropeptide whose expression in the spinal cord is restricted to the terminals of small diameter primary sensory neurons. We estimate that approximately one half of MOR-1 and two thirds of DOR-1 immunoreactivity in the cervical spinal cord is located on primary afferent fibers. These fibers have a broad rostro-caudal distribution, extending at least three segments rostral and caudal to their segment of entry. Regardless of marker used, the rostral projection was greatest, however, the distribution of CGRP-immunoreactive fibers differed somewhat in that they had a much smaller projection to the most caudal segments examined. Our results suggest that presynaptic delta opioid actions predominate, but that there are mixed pre- and postsynaptic inhibitory effects exerted by opioid analgesics that act at the spinal cord mu opioid receptor.

PMID:
11879805
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk