Send to:

Choose Destination
See comment in PubMed Commons below
EMBO J. 2002 Mar 1;21(5):1084-91.

The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex.

Author information

  • 1Department of Biology, Tufts University, Medford, MA 02155, USA.


The roX1 and roX2 genes of Drosophila produce male-specific non-coding RNAs that co-localize with the Male-Specific Lethal (MSL) protein complex. This complex mediates up-regulation of the male X chromosome by increasing histone H4 acetylation, thus contributing to the equalization of X-linked gene expression between the sexes. Both roX genes overlap two of approximately 35 chromatin entry sites, DNA sequences proposed to act in cis to direct the MSL complex to the X chromosome. Although dosage compensation is essential in males, an intact roX1 gene is not required by either sex. We have generated flies lacking roX2 and find that this gene is also non-essential. However, simultaneous removal of both roX RNAs causes a striking male-specific reduction in viability accompanied by relocation of the MSL proteins and acetylated histone H4 from the X chromosome to autosomal sites and heterochromatin. Males can be rescued by roX cDNAs from autosomal transgenes, demonstrating the genetic separation of the chromatin entry and RNA-encoding functions. Therefore, the roX1 and roX2 genes produce redundant, male-specific lethal transcripts required for targeting the MSL complex.

[PubMed - indexed for MEDLINE]
Free PMC Article

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms


Grant Support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk