Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochem J. 2002 Mar 1;362(Pt 2):289-96.

Concentrated solutions of salivary MUC5B mucin do not replicate the gel-forming properties of saliva.

Author information

  • 1Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Manchester M13 9PT, UK.

Abstract

We have developed a new approach to study the molecular organization of salivary mucus and salivary mucins using confocal fluorescence recovery after photobleaching (confocal-FRAP). MUC5B mucin, its reduced subunit and T-domains were prepared from saliva and fluorescently labelled. The translational self-diffusion coefficients were determined up to 3.6 mg/ml by confocal-FRAP. The results suggest that, in solutions of purified MUC5B mucin, at concentrations at which the hydrodynamic domains overlap, the intermolecular interactions are predominantly due to dynamic entanglements, and there was no evidence of specific self-association of MUC5B mucin, or of its subunits, or T-domains. The analysis of the salivary mucus gel also showed no specific interactions with the purified MUC5B components, but it was much less permeable than expected from its MUC5B content. The saliva was completely permeable to microspheres of 207 nm diameter, but showed size-dependent effects on the diffusion of larger microspheres (499 nm and 711 nm diameter). From these analyses the salivary mucus was shown to be both permeable and dynamic, and with the characteristics of a semi-dilute transient network at physiological concentration. Comparison of the results from saliva and purified MUC5B mucin solutions showed that the network properties of saliva were equivalent to a solution of purified MUC5B mucin of 10-20 times higher concentration. This showed that saliva has additional structure and organization not present in the purified MUC5B mucin and suggests there are other interactions and/or components within saliva that combine with MUC5B to produce its complete properties.

PMID:
11853536
[PubMed - indexed for MEDLINE]
PMCID:
PMC1222388
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Portland Press Icon for PubMed Central
    Write to the Help Desk