Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Orthop Res. 2002 Jan;20(1):29-35.

In situ cell nucleus deformation in tendons under tensile load; a morphological analysis using confocal laser microscopy.

Author information

  • 1Laboratory for Comparative Orthopaedic Research, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA. arnoczky@cvm.msu.edu

Abstract

Cell and cell nucleus deformations have been implicated in the mechanotransduction of mechanical loads acting on tissues. While in situ cell nucleus deformation in response to increasing tissue strains has been examined in articular cartilage this phenomenon has not been investigated in tendons. To examine in situ cell nuclei deformation in tendons undergoing tensile strain rat tail tendons were harvested from adult Sprague-Dawley rats and stained with acridine orange to highlight the cell nuclei. The tendons were mounted on a custom-designed, low-load, tensile testing device affixed to the mechanical stage of a confocal laser microscope. Cells within the tendons were isolated for analysis. Images of individual cells were captured at 0% strain as well as sequentially at 2%, 4% and 6% grip-to-grip tendon strain. Digital images of the cell nuclei were then measured in the x (length) and y (height) axis and deformation expressed as a percentage of cell nuclei strain. In addition, centroid-to-centroid distances of adjacent cell nuclei within each image were measured and used to calculate local tissue strain. There was a weak (r2 = 0.34) but significant (p < 0.01) correlation between local tissue strain and cell nucleus strain in the x axis. The results of this study support the hypothesis that in situ cell nucleus deformation does occur during tensile loading of tendons. This deformation may play a significant role in the mechanical signal transduction pathway of this tissue.

PMID:
11853087
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk