Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Virol. 2002 Mar;76(5):2410-23.

The solitary long terminal repeats of ERV-9 endogenous retrovirus are conserved during primate evolution and possess enhancer activities in embryonic and hematopoietic cells.

Author information

  • 1Department of Biochemistry and Molecular Biology, School of Medicine, Medical College of Georgia, Augusta, GA 30912, USA.

Abstract

The solitary long terminal repeats (LTRs) of ERV-9 endogenous retrovirus contain the U3, R, and U5 regions but no internal viral genes. They are middle repetitive DNAs present at 2,000 to 4,000 copies in primate genomes. Sequence analyses of the 5" boundary area of the erythroid beta-globin locus control region (beta-LCR) and the intron of the embryonic axin gene show that a solitary ERV-9 LTR has been stably integrated in the respective loci for at least 15 million years in the higher primates from orangutan to human. Functional studies utilizing the green fluorescent protein (GFP) gene as the reporter in transfection experiments show that the U3 region of the LTRs possesses strong enhancer activity in embryonic cells of widely different tissue origins and in adult cells of blood lineages. In both the genomic LTRs of embryonic placental cells and erythroid K562 cells and transfected LTRs of recombinant GFP plasmids in K562 cells, the U3 enhancer activates synthesis of RNAs that are initiated from a specific site 25 bases downstream of the AATAAA (TATA) motif in the U3 promoter. A second AATAAA motif in the R region does not serve as the TATA box or as the polyadenylation signal. The LTR-initiated RNAs extend through the R and U5 regions into the downstream genomic DNA. The results suggest that the ERV-9 LTR-initiated transcription process may modulate transcription of the associated gene loci in embryonic and hematopoietic cells.

PMID:
11836419
[PubMed - indexed for MEDLINE]
PMCID:
PMC153808
Free PMC Article

Images from this publication.See all images (8)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk