Display Settings:

Format

Send to:

Choose Destination
Development. 2002 Feb;129(3):747-59.

MEX-3 interacting proteins link cell polarity to asymmetric gene expression in Caenorhabditis elegans.

Author information

  • 1Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.

Abstract

The KH domain protein MEX-3 is central to the temporal and spatial control of PAL-1 expression in the C. elegans early embryo. PAL-1 is a Caudal-like homeodomain protein that is required to specify the fate of posterior blastomeres. While pal-1 mRNA is present throughout the oocyte and early embryo, PAL-1 protein is expressed only in posterior blastomeres, starting at the four-cell stage. To better understand how PAL-1 expression is regulated temporally and spatially, we have identified MEX-3 interacting proteins (MIPs) and characterized in detail two that are required for the patterning of PAL-1 expression. RNA interference of MEX-6, a CCCH zinc-finger protein, or SPN-4, an RNA recognition motif protein, causes PAL-1 to be expressed in all four blastomeres starting at the four-cell stage. Genetic analysis of the interactions between these mip genes and the par genes, which provide polarity information in the early embryo, defines convergent genetic pathways that regulate MEX-3 stability and activity to control the spatial pattern of PAL-1 expression. These experiments suggest that par-1 and par-4 affect distinct processes. par-1 is required for many aspects of embryonic polarity, including the restriction of MEX-3 and MEX-6 activity to the anterior blastomeres. We find that PAL-1 is not expressed in par-1 mutants, because MEX-3 and MEX-6 remain active in the posterior blastomeres. The role of par-4 is less well understood. Our analysis suggests that par-4 is required to inactivate MEX-3 at the four-cell stage. Thus, PAL-1 is not expressed in par-4 mutants because MEX-3 remains active in all blastomeres. We propose that MEX-6 and SPN-4 act with MEX-3 to translate the temporal and spatial information provided by the early acting par genes into the asymmetric expression of the cell fate determinant PAL-1.

PMID:
11830574
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk