Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2002 Feb 15;291(1):68-75.

A significant role for the heme oxygenase-1 gene in endothelial cell cycle progression.

Author information

  • 1Department of Medicine and Pharmacology, New York Medical College, Valhalla, New York 10595, USA.

Abstract

Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin with the release of iron and carbon monoxide. HO-1 is inducible by inflammatory conditions, which cause oxidative stress in endothelial cells. Overexpression of human HO-1 in endothelial cells may have the potential to provide protection against a variety of agents that cause oxidative stress. We investigated the physiological significance of human HO-1 overexpression, using a retroviral vector, on cell cycle progression in the presence and absence of pyrrolidine dithiocarbamate (PDTC). The addition of PDTC (25 and 50 microM) to human microvessel endothelial cells over 24 h resulted in significant (P < 0.05) abnormalities in DNA distribution and cell cycle progression compared to cells overexpressing the HO-1 gene. The addition of PDTC resulted in a significantly decreased G(1) phase and an increased G(2)/M phase in the control cells, but not in cells transduced with the human HO-1 gene (P < 0.05). Further, PDTC had a potent effect on DNA distribution abnormalities in exponentially grown cells compared to subconfluent cells. Upregulation of HO activity in endothelial cells, as a result of overexpressing human HO-1, prevented PDTC-mediated abnormalities in DNA distribution. Inhibition of HO activity by tin-mesoporphyrin (SnMP) (30 microM) resulted in enhancement of PDTC-mediated abnormalities in cell cycle progression. Bilirubin or iron did not mediate DNA distribution. We conclude that an increase in endothelial cell HO-1 activity with subsequent generation of carbon monoxide, elicited by gene transfer, reversed the PDTC-mediated abnormalities in cell cycle progression and is thus a potential therapeutic means for attenuating the effects of oxidative stress-causing agents.

©2002 Elsevier Science (USA).

PMID:
11829463
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk