Display Settings:

Format

Send to:

Choose Destination
Biochemistry. 2002 Feb 12;41(6):1836-42.

Abietadiene synthase catalysis: conserved residues involved in protonation-initiated cyclization of geranylgeranyl diphosphate to (+)-copalyl diphosphate.

Author information

  • 1Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA.

Abstract

Abietadiene synthase catalyzes two sequential, mechanistically distinct cyclization reactions in the formation of a mixture of abietadiene double bond isomers as the committed step in resin acid biosynthesis. Each reaction is carried out at a separate active site residing in a structurally distinct domain, and the reactions are kinetically separable. The first cyclization reaction is initiated by protonation of the terminal double bond of the universal diterpene precursor, geranylgeranyl diphosphate. The pH dependence of the overall reaction is consistent with an acid-base catalytic mechanism, and a divalent metal ion plays a role in this reaction probably by binding the diphosphate moiety to assist in positioning the substrate for catalysis. A putative active site for the protonation-initiated cyclization was defined by modeling abietadiene synthase and locating the DXDD motif previously shown to be involved in this reaction. A number of charged and aromatic residues, which are highly conserved in mechanistically related diterpene cyclases, line the putative active site. Alanine substitutions were made for each of these residues, as were asparagine and glutamate substitutions for the aspartates of the DXDD motif. Kinetic evaluation confirmed the involvement of most of the targeted residues in the reaction, and analysis of mutational effects on the pH-activity profile and affinity for a transition state analogue suggested specific roles for several of these residues in catalyzing the cyclization of geranylgeranyl diphosphate to (+)-copalyl diphosphate. A functional role was also suggested for the cryptic insertional element found in abietadiene synthase and other diterpene synthases that carry out similar protonation-initiated cyclizations.

PMID:
11827528
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk