Display Settings:

Format

Send to:

Choose Destination
Curr Biol. 2002 Jan 22;12(2):147-52.

Redox potential: differential roles in dCRY and mCRY1 functions.

Author information

  • 1Laboratory of Developmental Chronobiology, MassGeneral Hospital for Children, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA.

Abstract

Cryptochromes (CRYs) are flavoproteins important for the molecular clocks of animals. The Drosophila cryptochrome (dCRY) is a circadian photoreceptor, whereas mouse cryptochromes (mCRY1 and mCRY2) are essential negative elements of circadian clock transcriptional feedback loops. It has been proposed that reduction/oxidation (redox) reactions are important for dCRY light responsiveness and mCRY1 transcriptional inhibition. We therefore evaluated the role of redox in light-dependent activation of dCRY and in mCRY1 transcriptional inhibition in Drosophila Schneider 2 cells. Using site-directed mutagenesis, three of the four conserved flavin binding residues in dCRY were found to be essential for light responses, whereas three of the four corresponding residues in mCRY1 did not abolish transcriptional responses. Two tryptophan residues in dCRY are critical for its function and are likely involved in an intramolecular redox reaction. The corresponding tryptophan residues do not play a redox-mediated role in mCRY1 function. The data provide a multistep redox model for the light-dependent activities of dCRY and suggest that such a model does not apply to mCRY1 transcriptional responses.

PMID:
11818067
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk