Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2002 Jan 30;124(4):672-8.

Top down characterization of larger proteins (45 kDa) by electron capture dissociation mass spectrometry.

Author information

  • 1Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA.

Abstract

The structural characterization of proteins expressed from the genome is a major problem in proteomics. The solution to this problem requires the separation of the protein of interest from a complex mixture, the identification of its DNA-predicted sequence, and the characterization of sequencing errors and posttranslational modifications. For this, the "top down" mass spectrometry (MS) approach, extended by the greatly increased protein fragmentation from electron capture dissociation (ECD), has been applied to characterize proteins involved in the biosynthesis of thiamin, Coenzyme A, and the hydroxylation of proline residues in proteins. With Fourier transform (FT) MS, electrospray ionization (ESI) of a complex mixture from an E. coli cell extract gave 102 accurate molecular weight values (2-30 kDa), but none corresponding to the predicted masses of the four desired enzymes for thiamin biosynthesis (GoxB, ThiS, ThiG, and ThiF). MS/MS of one ion species (representing approximately 1% of the mixture) identified it with the DNA-predicted sequence of ThiS, although the predicted and measured molecular weights were different. Further purification yielded a 2-component mixture whose ECD spectrum characterized both proteins simultaneously as ThiS and ThiG, showing an additional N-terminal Met on the 8 kDa ThiS and removal of an N-terminal Met and Ser from the 27 kDa ThiG. For a second system, the molecular weight of the 45 kDa phosphopantothenoylcysteine synthetase/decarboxylase (CoaBC), an enzyme involved in Coenzyme A biosynthesis, was 131 Da lower than that of the DNA prediction; the ECD spectrum showed that this is due to the removal of the N-terminal Met. For a third system, viral prolyl 4-hydroxylase (26 kDa), ECD showed that multiple molecular ions (+98, +178, etc.) are due to phosphate noncovalent adducts, and MS/MS pinpointed the overall mass discrepancy of 135 Da to removal of the initiation Met (131 Da) and to formation of disulfide bonds (2 x 2 Da) at C32-C49 and C143-C147, although 10 S-S positions were possible. In contrast, "bottom up" proteolysis characterization of the CoaBC and the P4H proteins was relatively unsuccessful. The addition of ECD substantially increases the capabilities of top down FTMS for the detailed structural characterization of large proteins.

PMID:
11804498
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk