Format

Send to

Choose Destination
See comment in PubMed Commons below
IUBMB Life. 2001 Sep-Nov;52(3-5):221-9.

Role of substrates in the regulation of mitochondrial function in situ.

Author information

  • 1Laboratory of Fundamental and Applied Bioenergetics, J. Fourier University, Grenoble, France. xavier.leverve@ujf-grenoble.fr

Abstract

Investigations of mitochondrial oxidative phosphorylation have been mainly carried out in isolated mitochondria, where the experimental conditions can be precisely set. However, in intact living systems oxidative phosphorylation takes place in a complex environment, whose experimental dissection is a major challenge. It has long been recognized that the efficiency of oxidative phosphorylation depends on the nature of the respiratory substrates, which feed electrons to the respiratory chain at different levels. Yet, the role of substrates in determining mitochondrial function and their response to energetic stress has been largely overlooked. Here we review recent work showing that the nature of the energetic substrates profoundly affects the mitochondrial responses to manipulations of pathophysiological relevance, such as uncoupling and opening of the permeability transition pore (PTP). Uncoupling of intact hepatocytes caused very different metabolic effects depending on whether carbohydrates or lipids were the energy source. With dihydroxyacetone as the substrate dinitrophenol caused a collapse of the mitochondrial membrane potential and of the ATP/ADP ratio, while the respiratory rate was increased only transiently. With octanoate as the substrate, on the other hand, dinitrophenol caused a dramatic stimulation of the respiratory rate, while the mitochondrial membrane potential and ATP/ADP ratio were affected only marginally. We then review results indicating that the activity of complex I directly regulates the PTP, a finding that emphasizes the importance of the respiratory substrates in PTP regulation.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk