Display Settings:

Format

Send to:

Choose Destination
J Cell Sci. 2001 Dec;114(Pt 24):4359-69.

Smad regulation in TGF-beta signal transduction.

Author information

  • 1Ludwig Institute for Cancer Research, Box 595, SE-751 24 Uppsala, Sweden. Aris.Moustakas@LICR.uu.se

Abstract

Smad proteins transduce signals from transforming growth factor-beta (TGF-beta) superfamily ligands that regulate cell proliferation, differentiation and death through activation of receptor serine/threonine kinases. Phosphorylation of receptor-activated Smads (R-Smads) leads to formation of complexes with the common mediator Smad (Co-Smad), which are imported to the nucleus. Nuclear Smad oligomers bind to DNA and associate with transcription factors to regulate expression of target genes. Alternatively, nuclear R-Smads associate with ubiquitin ligases and promote degradation of transcriptional repressors, thus facilitating target gene regulation by TGF-beta. Smads themselves can also become ubiquitinated and are degraded by proteasomes. Finally, the inhibitory Smads (I-Smads) block phosphorylation of R-Smads by the receptors and promote ubiquitination and degradation of receptor complexes, thus inhibiting signalling.

PMID:
11792802
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk