Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genome Biol. 2001;2(12):RESEARCH0051. Epub 2001 Nov 13.

Quod erat demonstrandum? The mystery of experimental validation of apparently erroneous computational analyses of protein sequences.

Author information

  • 1National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

Abstract

BACKGROUND:

Computational predictions are critical for directing the experimental study of protein functions. Therefore it is paradoxical when an apparently erroneous computational prediction seems to be supported by experiment.

RESULTS:

We analyzed six cases where application of novel or conventional computational methods for protein sequence and structure analysis led to non-trivial predictions that were subsequently supported by direct experiments. We show that, on all six occasions, the original prediction was unjustified, and in at least three cases, an alternative, well-supported computational prediction, incompatible with the original one, could be derived. The most unusual cases involved the identification of an archaeal cysteinyl-tRNA synthetase, a dihydropteroate synthase and a thymidylate synthase, for which experimental verifications of apparently erroneous computational predictions were reported. Using sequence-profile analysis, multiple alignment and secondary-structure prediction, we have identified the unique archaeal 'cysteinyl-tRNA synthetase' as a homolog of extracellular polygalactosaminidases, and the 'dihydropteroate synthase' as a member of the beta-lactamase-like superfamily of metal-dependent hydrolases.

CONCLUSIONS:

In each of the analyzed cases, the original computational predictions could be refuted and, in some instances, alternative strongly supported predictions were obtained. The nature of the experimental evidence that appears to support these predictions remains an open question. Some of these experiments might signify discovery of extremely unusual forms of the respective enzymes, whereas the results of others could be due to artifacts.

PMID:
11790254
[PubMed - indexed for MEDLINE]
PMCID:
PMC64836
Free PMC Article

Images from this publication.See all images (8)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

MeSH Terms, Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk