Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Arterioscler Thromb Vasc Biol. 2002 Jan;22(1):76-81.

Shear stress activation of SREBP1 in endothelial cells is mediated by integrins.

Author information

  • 1Department of Bioengineering and Whitaker Institute of Biomedical Engineering, University of California at San Diego, La Jolla, USA.

Abstract

We investigated the effect of shear stress on the sterol regulatory element-binding protein 1 (SREBP1) in vascular endothelial cells (ECs) and the mechanotransduction mechanism involved. Application of a shear stress (12 dyn/cm(2)) caused the proteolytic cleavage of SREBP1 and the ensuing translocation of its transcription factor domain into the nucleus. As a result, shear stress increased the mRNAs encoding the low density lipoprotein receptor (LDLR), as well as the binding of (125)I-LDL. Using a step flow channel, we showed that SREBP1 activation in ECs under laminar flow is transient, but disturbed flow causes sustained activation. In studying the shear stress-elicited molecular signaling that activates SREBP1, we found that blocking the beta(1)-integrin with the AIIB2 blocking-type monoclonal antibody inhibited SREBP1 activation induced by shear stress. EC attachment to fibronectin or the activation of beta(1)-integrin in the suspended ECs by the TS2/16 monoclonal antibody was sufficient for SREBP1 activation. Furthermore, transient transfection assays showed that dominant-negative mutants of focal adhesion kinase and c-Src attenuated the shear stress-increased LDLR promoter activity. These results demonstrate that integrin signaling plays a critical role in the modulation of SREBP in ECs in response to shear stress.

PMID:
11788464
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk