Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2002 Jan 7;156(1):29-34. Epub 2002 Jan 7.

Internal Ca(2+) release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue.

Author information

  • 1Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.


Calcium ions, present inside all eukaryotic cells, are important second messengers in the transduction of biological signals. In mammalian cells, the release of Ca(2+) from intracellular compartments is required for signaling and involves the regulated opening of ryanodine and inositol-1,4,5-trisphosphate (IP3) receptors. However, in budding yeast, no signaling pathway has been shown to involve Ca(2+) release from internal stores, and no homologues of ryanodine or IP3 receptors exist in the genome. Here we show that hyperosmotic shock provokes a transient increase in cytosolic Ca(2+) in vivo. Vacuolar Ca(2+), which is the major intracellular Ca(2+) store in yeast, is required for this response, whereas extracellular Ca(2+) is not. We aimed to identify the channel responsible for this regulated vacuolar Ca(2+) release. Here we report that Yvc1p, a vacuolar membrane protein with homology to transient receptor potential (TRP) channels, mediates the hyperosmolarity induced Ca(2+) release. After this release, low cytosolic Ca(2+) is restored and vacuolar Ca(2+) is replenished through the activity of Vcx1p, a Ca(2+)/H(+) exchanger. These studies reveal a novel mechanism of internal Ca(2+) release and establish a new function for TRP channels.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk