Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 2001 Dec 20-27;414(6866):929-33.

Stimulatory effect of splicing factors on transcriptional elongation.

Author information

  • 1Department of Molecular Biology, University of California at Berkeley, California, 94720-3206, USA.

Abstract

Transcription and pre-mRNA splicing are tightly coupled gene expression events in eukaryotic cells. An interaction between the carboxy-terminal domain of the largest subunit of RNA polymerase (Pol) II and components of the splicing machinery is postulated to mediate this coupling. Here, we show that splicing factors function directly to promote transcriptional elongation, demonstrating that transcription is more intimately coupled to splicing than previously thought. The spliceosomal U small nuclear ribonucleoproteins (snRNPs) interact with human transcription elongation factor TAT-SF1 (refs 6,7,8,9) and strongly stimulate polymerase elongation when directed to an intron-free human immunodeficiency virus-1 (HIV-1) template. This effect is likely to be mediated through the binding of TAT-SF1 to elongation factor P-TEFb, a proposed component of the transcription elongation complex. Inclusion of splicing signals in the nascent transcript further stimulates transcription, supporting the notion that the recruitment of U snRNPs near the elongating polymerase is important for transcription. Because the TAT-SF1-U snRNP complex also stimulates splicing in vitro, it may serve as a dual-function factor to couple transcription and splicing and to facilitate their reciprocal activation.

PMID:
11780068
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk