Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Mar 15;277(11):9447-54. Epub 2002 Jan 4.

Functional domains of histone deacetylase-3.

Author information

  • 1H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612, USA.


Post-translational modifications of histones, in general, and acetylation/deacetylation, in particular, can dramatically alter gene expression in eukaryotic cells. In humans, four highly homologous class I HDAC enzymes (HDAC1, HDAC2, HDAC3, and HDAC8) have been identified to date. Although HDAC3 shares some structural and functional similarities with other class I HDACs, it exists in multisubunit complexes separate and different from other known HDAC complexes, implying that individual HDACs might function in a distinct manner. In this current study, to understand further the cellular function of HDAC3 and to uncover possible unique roles this protein may have in gene regulation, we performed a detailed analysis of HDAC3 using deletion mutations. Surprisingly, we found that the non-conserved C-terminal region of HDAC3 is required for both deacetylase and transcriptional repression activity. In addition, we discovered that the central portion of the HDAC3 protein possesses a nuclear export signal, whereas the C-terminal part of HDAC3 contributes to the protein's localization in the nucleus. Finally, we found that HDAC3 forms oligomers in vitro and in vivo and that the N-terminal portion of HDAC3 is necessary for this property. These data indicate that HDAC3 comprises separate, non-overlapping domains that contribute to the unique properties and function of this protein.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk