Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genome Res. 2002 Jan;12(1):203-14.

Associating genes with gene ontology codes using a maximum entropy analysis of biomedical literature.

Author information

  • 1Department of Genetics, Stanford University, Stanford, California 94305, USA.

Abstract

Functional characterizations of thousands of gene products from many species are described in the published literature. These discussions are extremely valuable for characterizing the functions not only of these gene products, but also of their homologs in other organisms. The Gene Ontology (GO) is an effort to create a controlled terminology for labeling gene functions in a more precise, reliable, computer-readable manner. Currently, the best annotations of gene function with the GO are performed by highly trained biologists who read the literature and select appropriate codes. In this study, we explored the possibility that statistical natural language processing techniques can be used to assign GO codes. We compared three document classification methods (maximum entropy modeling, naïve Bayes classification, and nearest-neighbor classification) to the problem of associating a set of GO codes (for biological process) to literature abstracts and thus to the genes associated with the abstracts. We showed that maximum entropy modeling outperforms the other methods and achieves an accuracy of 72% when ascertaining the function discussed within an abstract. The maximum entropy method provides confidence measures that correlate well with performance. We conclude that statistical methods may be used to assign GO codes and may be useful for the difficult task of reassignment as terminology standards evolve over time.

PMID:
11779846
[PubMed - indexed for MEDLINE]
PMCID:
PMC155261
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk