Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2002 Jan 7;156(1):185-98. Epub 2002 Jan 3.

Activation of retinoblastoma protein in mammary gland leads to ductal growth suppression, precocious differentiation, and adenocarcinoma.

Author information

  • 1Department of Medicine, University of Toronto, Ontario, Canada M5G 2M1.


The retinoblastoma (Rb) tumor suppressor controls cellular proliferation, survival, and differentiation and is functionally inactivated by mutations or hyperphosphorylation in most human cancers. Although activation of endogenous Rb is thought to provide an effective approach to suppress cell proliferation, long-term inhibition of apoptosis by active Rb may have detrimental consequences in vivo. To directly test these paradigms, we targeted phosphorylation-resistant constitutively active Rb alleles, Rb Delta Ks, to the mouse mammary gland. Pubescent transgenic females displayed reduced ductal elongation and cell proliferation at the endbuds. Post-puberty transgenic mice exhibited precocious cellular differentiation and beta-casein expression and extended survival of the mammary epithelium with a moderate but specific effect on the expression of E2F1, IGF1R alpha, and phospho-protein kinase B/AKT. Remarkably, approximately 30% Rb Delta K transgenic females developed focal hyperplastic nodules, and approximately 7% exhibited full-blown mammary adenocarcinomas within 15 mo. Expression of the Rb Delta K transgene in these mammary tumors was reduced greatly. Our results suggest that transient activation of Rb induces cancer by extending cell survival and that the dual effects of Rb on cell proliferation and apoptosis impose an inherent caveat to the use of the Rb pathway for long-term cancer therapy.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk