Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cardiovasc Electrophysiol. 2001 Nov;12(11):1269-77.

Evolution of action potential propagation and repolarization in cultured neonatal rat ventricular myocytes.

Author information

  • 1Rappaport Family Institute for Research in the Medical Sciences, Bruce Rappaport Faculty of Medicine, The Bernard Katz Center for Cell Biophysics, Technion-Israel Institute of Technology, Haifa.

Abstract

INTRODUCTION:

Cultured neonatal rat ventricular myocytes (NRVM) reestablish gap junctions as they form synchronously and spontaneously beating monolayers, thus providing a useful model for studying activation and repolarization.

METHODS AND RESULTS:

We used the multielectrode array data acquisition system with 60 unipolar electrodes to investigate the functional organization of cultured NRVM, by determining propagation and repolarization patterns. Activation maps were constructed from the local activation times at each electrode. During days 3 to 8 in culture, QRS amplitude and dV/dt(max) increased with age. Concomitantly, with the culture maturation, QT interval (representing action potential duration) decreased, and T wave amplitude and slopes of the T wave ascending and descending limbs progressively increased. The changes in conduction velocity were different than those of the electrogram properties, slightly increasing during the first 3 to 5 days and gradually declining toward day 8 in culture.

CONCLUSION:

Establishment of uniform activation patterns in spontaneously firing or driven myocytes in monolayer cultures is accompanied by organization of activation and repolarization whose evolution appears in concert with that of a mature connexin43 staining pattern. The experimental techniques developed in this study provide useful tools to investigate the complex relations among gap junctions, conduction velocity, and propagation patterns, as well as a means to learn how gap junctional remodeling under pathophysiologic conditions predisposes the myocardium to arrhythmias.

PMID:
11761415
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk