Format

Send to

Choose Destination
See comment in PubMed Commons below
J Dent Res. 2001 Nov;80(11):2025-9.

Cell-interactive alginate hydrogels for bone tissue engineering.

Author information

  • 1Department of Biomedical Engineering, University of Michigan, Ann Arbor 48109-2136, USA.

Abstract

There is significant interest in the development of injectable carriers for cell transplantation to engineer bony tissues. In this study, we hypothesized that adhesion ligands covalently coupled to hydrogel carriers would allow one to control pre-osteoblast cell attachment, proliferation, and differentiation. Modification of alginate with an RGD-containing peptide promoted osteoblast adhesion and spreading, whereas minimal cell adhesion was observed on unmodified hydrogels. Raising the adhesion ligand density increased osteoblast proliferation, and a minimum ligand density (1.5-15 femtomoles/cm2) was needed to elicit this effect. MC3T3-E1 cells demonstrated increased osteoblast differentiation with the peptide-modified hydrogels, as confirmed by the up-regulation of bone-specific differentiation markers. Further, transplantation of primary rat calvarial osteoblasts revealed statistically significant increases of in vivo bone formation at 16 and 24 weeks with G4RGDY-modified alginate compared with unmodified alginate. These findings demonstrate that biomaterials may be designed to control bone development from transplanted cells.

PMID:
11759015
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk