Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Mar 22;277(12):10173-7. Epub 2001 Dec 20.

Determinants of ligand specificity in groups I and IV WW domains as studied by surface plasmon resonance and model building.

Author information

  • 1Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.

Abstract

WW domains are universal protein modules for binding Pro-rich ligands. They are classified into four groups according to their binding specificity. Arg-14 and Arg-17, on the WW domain of Pin1, are thought to be important for the binding of Group IV ligands that have (Ser(P)/Thr(P))-Pro sequences. We have applied surface plasmon resonance to determine the ligand specificity of several WW domains containing Arg-14. Among these WW domains, Rsp5.2 and mNedd4.3 bound only to the Group I ligand containing Pro-Pro-Xaa-Tyr with K(D) values of 11 and 55 microm, respectively. The WW domains of hPin1, Caenorhabditis elegans Pin1 homologue (Y110), PinA, and SspI bound to Group IV ligands with K(D) values ranging from 22 to 700 microm. PinA and SspI do not have Arg-17, unlike Pin1 and Y110. The modeled structures of the WW domains of PinA and SspI revealed that the structure and the network of hydrogen bonds of Loop I, which are also formed in Pin1 and Y110, are conserved. We propose that this configuration of Loop I (referred to as the "p patch") is necessary for binding Group IV ligands and that it can be used to predict the specificity and functions of other WW domains.

PMID:
11751914
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk