Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Genes Chromosomes Cancer. 2002 Jan;33(1):82-92.

Molecular characterization of FRAXB and comparative common fragile site instability in cancer cells.

Author information

  • 1Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA.


The common fragile site, FRA3B, has been shown to be a site of frequent homozygous deletions in some cancers, resulting in loss of expression of the associated FHIT gene. It has been proposed that FHIT is a tumor suppressor gene that is inactivated as a result of the instability of FRA3B in tumorigenesis. More recently, deletions at other common fragile sites, FRA7G and FRA16D, have been identified in a small number of cancer cell lines. Here, we have mapped and molecularly characterized the frequently observed common fragile site FRAXB, located at Xp22.3. Like other common fragile sites, it spans a large genomic region of approximately 500 kb. Three known genes, including the microsomal steroid sulfatase locus (STS), map within the fragile site region. We examined FRAXB and four other fragile sites (FRA3B, FRA7G, FRA7H, FRA16D), and several associated genes, for deletions and aberrant transcripts in a panel of cancer cell lines and primary tumors. Deletions within FRAXB were seen in 4/27 (14.8%) of the primary tumors and cell lines examined. Three of the 21 (14.3%) cell lines examined were characterized by loss of expression of one or more FRAXB-associated genes. Moreover, all of the fragile sites examined were characterized by genomic deletions within the fragile site regions in one or more tumors or cell lines, including FRAXB, which is not associated with any known tumor suppressor genes or activity. Our results further support the hypothesis that common fragile sites and their associated genes are, in general, unstable in some cancer cells.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk