Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 2001 Dec 13;414(6865):748-51.

Transmission potential of smallpox in contemporary populations.

Author information

  • 1Centre for Applied Microbiology and Research, Porton, Down, Salisbury, Wiltshire SP4 0JG, UK.

Erratum in

  • Nature 2002 Feb 28;415(6875):1056.


Despite eradication, smallpox still presents a risk to public health whilst laboratory stocks of virus remain. One factor crucial to any assessment of this risk is R0, the average number of secondary cases infected by each primary case. However, recently applied estimates have varied too widely (R0 from 1.5 to >20) to be of practical use, and often appear to disregard contingent factors such as socio-economic conditions and herd immunity. Here we use epidemic modelling to show a more consistent derivation of R0. In isolated pre-twentieth century populations with negligible herd immunity, the numbers of cases initially rose exponentially, with an R0 between 3.5 and 6. Before outbreak controls were applied, smallpox also demonstrated similar levels of transmission in 30 sporadic outbreaks in twentieth century Europe, taking into account pre-existing vaccination levels (about 50%) and the role of hospitals in doubling early transmission. Should smallpox recur, such estimates of transmission potential (R0 from 3.5 to 6) predict a reasonably rapid epidemic rise before the implementation of public health interventions, because little residual herd immunity exists now that vaccination has ceased.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk