Send to:

Choose Destination
See comment in PubMed Commons below
J Bone Joint Surg Am. 2001 Dec;83-A(12):1789-97.

Effect of anti-tumor necrosis factor-alpha gene therapy on wear debris-induced osteolysis.

Author information

  • 1Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.



Particle phagocytosis by macrophages induces the secretion of tumor necrosis factor-alpha, which is involved in the development of an osteolytic response. Therefore, we aimed to determine whether gene delivery of a soluble inhibitor of tumor necrosis factor-alpha (sTNFR:Fc) could prevent wear debris-induced osteolysis in a mouse model. sTNFR:Fc is a fusion protein containing the extracellular domain of the human type-I tumor necrosis factor receptor fused to the Fc region of mouse immunoglobulin. It acts by binding to tumor necrosis factor-alpha and preventing signaling through the membrane-bound tumor necrosis factor receptors.


An adenoviral vector encoding the LacZ gene (Ad.CMV-NlacZ) was propagated and was tested for its ability to transduce calvarial tissue. Ad.CMV-TNFR:Fc (encoding sTNFR:Fc) or Ad.CMV-NlacZ was administered to CBAxB6 mice in the presence or absence of titanium particles implanted onto the calvaria. Serum levels of sTNFR:Fc were measured with enzyme-linked immunosorbent assay, and the mice were killed on the tenth postoperative day for histological analysis. The experiments were repeated in athymic nude mice to avoid complications associated with the adenovirus-specific immune response.


Administration of the control virus (Ad.CMV-NlacZ) transduced 10% of the cells in the periosteum. Ad.CMV-NlacZ treatment of sham-treated or titanium-treated animals induced significant bone resorption and osteoclastogenesis above control levels (that is, those in animals not treated with a virus). Treatment with the sTNFR:Fc virus did not reduce bone resorption or osteoclast numbers below control levels in CBAxB6 mice. In the athymic mice, no increase in the midline sagittal suture area or osteoclastogenesis was observed after treatment with the control vector and sTNFR:Fc gene therapy reduced the suture area to background levels.


An immunologic response to Ad.CMV-NlacZ was most likely responsible for the increase in bone resorption and osteoclastogenesis in the animals treated with the control vector alone. In the athymic mice, in the absence of this immune response, sTNFR:Fc gene therapy reduced bone resorption in the midline sagittal suture area but had no effect on osteoclastogenesis.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk