Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nat Cell Biol. 2002 Jan;4(1):59-65.

The gated gait of the processive molecular motor, myosin V.

Author information

  • 1Department of Biology, University of York, PO Box 373, York YO10 5YW, UK. cv1@york.ac.uk

Abstract

Class V myosins are actin-based molecular motors involved in vesicular and organellar transport. Single myosin V molecules move processively along F-actin, taking several 36-nm steps for each diffusional encounter. Here we have measured the mechanical interactions between mouse brain myosin V and rabbit skeletal F-actin. The working stroke produced by a myosin V head is approximately 25 nm, consisting of two separate mechanical phases (20 + 5 nm). We show that there are preferred myosin binding positions (target zones) every 36 nm along the actin filament, and propose that the 36-nm steps of the double-headed motor are a combination of the working stroke (25 nm) of the bound head and a biased, thermally driven diffusive movement (11 nm) of the free head onto the next target zone. The second phase of the working stroke (5 nm) acts as a gate - like an escapement in a clock, coordinating the ATPase cycles of the two myosin V heads. This mechanism increases processivity and enables a single myosin V molecule to travel distances of several hundred nanometres along the actin filament.

Comment in

  • A crossbridge too far. [Nat Cell Biol. 2002]
PMID:
11740494
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk