Send to

Choose Destination
See comment in PubMed Commons below
Pharmacogenetics. 2001 Dec;11(9):747-56.

Human sulfotransferase SULT1C1 pharmacogenetics: gene resequencing and functional genomic studies.

Author information

  • 1Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Graduate School-Mayo Medical School-Mayo Clinic, Rochester MN, USA.


Sulfotransferase (SULT) enzymes catalyze an important phase II reaction in the biotransformation of many drugs and other xenobiotics. We previously cloned the human SULT1C1 cDNA and gene as steps toward pharmacogenetic studies. We have now 'resequenced' the exons, portions of introns flanking exons and approximately 315 bp of the 5' flanking region of SULT1C1 in 89 DNA samples from Caucasian subjects to identify common genetic polymorphisms. Nineteen separate polymorphisms were observed, including four nonsynonymous coding region single nucleotide polymorphisms (cSNPs) and five insertions/deletions. These data were also used to determine and/or infer common SULT1C1 haplotypes. Three of the four nonsynonymous cSNPs had allele frequencies greater than 1%, including one with a frequency of 6.7%. Expression constructs were created for all of the nonsynonymous cSNPs observed, and those constructs were used to transfect COS-1 cells. Three of the four SULT1C1 variant allozymes had significantly reduced enzyme activity when compared with the wild-type enzyme. Among the variant allozymes, apparent Km values for 3'-phosphoadenosine 5'-phosphosulfate (PAPS), the sulfate donor for the reaction, varied 7-fold, and quantitative Western blot analysis showed variable levels of immunoreactive protein when compared to the wild-type enzyme. Therefore, mechanisms responsible for decreased activity involved both alterations in levels of enzyme protein and alterations in substrate kinetics. In summary, application of a 'genotype to phenotype' strategy has resulted in the identification of a series of functionally significant common genetic polymorphisms for SULT1C1. It will now be possible to evaluate the possible contribution of these polymorphisms to variation in the sulfate conjugation of drugs, other xenobiotics and/or disease pathophysiology.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk