Format

Send to:

Choose Destination
See comment in PubMed Commons below

How muscles accommodate movement in different physical environments: aquatic vs. terrestrial locomotion in vertebrates.

Author information

  • 1Department of Organismic and Evolutionary Biology, Harvard University, Concord Field Station, Old Causeway Rd., Bedford, MA 01730, USA. ggillis@oeb.harvard.edu

Abstract

Representatives of nearly all vertebrate classes are capable of coordinated movement through aquatic and terrestrial environments. Though there are good data from a variety of species on basic patterns of muscle recruitment during locomotion in a single environment, we know much less about how vertebrates use the same musculoskeletal structures to accommodate locomotion in physically distinct environments. To address this issue, we have gathered data from a broad range of vertebrates that move successfully through water and across land, including eels, toads, turtles and rats. Using high-speed video in combination with electromyography and sonomicrometry, we have quantified and compared the activity and strain of individual muscles and the movements they generate during aquatic vs. terrestrial locomotion. In each focal species, transitions in environment consistently elicit alterations in motor output by major locomotor muscles, including changes in the intensity and duration of muscle activity and shifts in the timing of activity with respect to muscle length change. In many cases, these alterations likely change the functional roles played by muscles between aquatic and terrestrial locomotion. Thus, a variety of forms of motor plasticity appear to underlie the ability of many species to move successfully through different physical environments and produce diverse behaviors in nature.

PMID:
11733167
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk