Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
FASEB J. 2001 Dec;15(14):2669-79.

Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis.

Author information

  • 1Ralph H. Johnson Veterans Administration, Department of Medicine, Medical University of South Carolina, South Carolina 29425, USA.

Abstract

Our previous results have indicated that the major cellular pool of sphingomyelin present on the outer leaflet of the plasma membrane is not involved in the ceramide pathway of apoptosis. Thus, in this study we aimed at defining which intracellular pools of sphingomyelin and ceramide are involved in cell death. The bacterial sphingomyelinase (SMase) gene fused with green fluorescent protein was subcloned into mammalian vectors containing sequences that target the fusion proteins to cytoplasm, plasma membrane, mitochondria, Golgi apparatus, endoplasmic reticulum, or nucleus. Transfection of MCF7 breast cancer cells showed for all constructs an increase in SMase activity ranging from 2- to 60-fold, concomitant with an increase in total cellular ceramide levels (10-100%) as compared with vector-transfected cells. Next, the effect of overexpression of the SMase on cell death was examined. Results demonstrate that only when bacterial SMase was targeted to mitochondria did cells undergo apoptosis; its targeting to the other intracellular compartments was ineffective. Further, the results show that apoptosis induced by mitochondrial targeting of bacterial SMase requires SMase catalytic activity, is prevented by the overexpression of Bcl-2, and is mediated by inducing cytochrome c release. These results demonstrate that ceramide induces cell death specifically when generated in mitochondria. The results highlight the significance of compartment-specific lipid-mediated cell regulation, and they offer a novel general approach for these studies.

PMID:
11726543
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk