Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 2001 Nov 15;414(6861):286-9.

How many-particle interactions develop after ultrafast excitation of an electron-hole plasma.

Author information

  • 1Physik-Department E11, Technische Universit√§t M√ľnchen, James-Franck-Strasse, D-85748 Garching, Germany.

Abstract

Electrostatic coupling between particles is important in many microscopic phenomena found in nature. The interaction between two isolated point charges is described by the bare Coulomb potential, but in many-body systems this interaction is modified as a result of the collective response of the screening cloud surrounding each charge carrier. One such system involves ultrafast interactions between quasi-free electrons in semiconductors-which are central to high-speed and future quantum electronic devices. The femtosecond kinetics of nonequilibrium Coulomb systems has been calculated using static and dynamical screening models that assume the instantaneous formation of interparticle correlations. However, some quantum kinetic theories suggest that a regime of unscreened bare Coulomb collisions might exist on ultrashort timescales. Here we monitor directly the temporal evolution of the charge-charge interactions after ultrafast excitation of an electron-hole plasma in GaAs. We show that the onset of collective behaviour such as Coulomb screening and plasmon scattering exhibits a distinct time delay of the order of the inverse plasma frequency, that is, several 10(-14) seconds.

PMID:
11713523
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk