Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
EMBO J. 2001 Nov 15;20(22):6453-63.

Physical evidence for distinct mechanisms of translational control by upstream open reading frames.

Author information

  • 1Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, 20 000 NW Walker Road, Beaverton, OR 97006-8921, USA.

Abstract

The Saccharomyces cerevisiae GCN4 mRNA 5'-leader contains four upstream open reading frames (uORFs) and the CPA1 leader contains a single uORF. To determine how these uORFs control translation, we examined mRNAs containing these leaders in cell-free translation extracts to determine where ribosomes were loaded first and where they were loaded during steady-state translation. Ribosomes predominantly loaded first at GCN4 uORF1. Following its translation, but not the translation of uORF4, they efficiently reinitiated protein synthesis at Gcn4p. Adding purified eIF2 increased reinitiation at uORFs 3 or 4 and reduced reinitiation at Gcn4p. This indicates that eIF2 affects the site of reinitiation following translation of GCN4 uORF1 in vitro. In contrast, for mRNA containing the CPA1 uORF, ribosomes reached the downstream start codon by scanning past the uORF. Addition of arginine caused ribosomes that had synthesized the uORF polypeptide to stall at its termination codon, reducing loading at the downstream start codon, apparently by blocking scanning ribosomes, and not by affecting reinitiation. The GCN4 and CPA1 uORFs thus control translation in fundamentally different ways.

PMID:
11707416
[PubMed - indexed for MEDLINE]
PMCID:
PMC125715
Free PMC Article

Images from this publication.See all images (8)Free text

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk