Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below

Nonalcoholic steatosis and steatohepatitis. III. Peroxisomal beta-oxidation, PPAR alpha, and steatohepatitis.

Author information

  • Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611-3008, USA. jkreddy@northwestern.edu

Abstract

Peroxisomes are involved in the beta-oxidation chain shortening of long-chain and very-long-chain fatty acyl-CoAs, long-chain dicarboxylyl-CoAs, the CoA esters of eicosanoids, 2-methyl-branched fatty acyl-CoAs, and the CoA esters of the bile acid intermediates, and in the process, they generate H(2)O(2). There are two complete sets of beta-oxidation enzymes present in peroxisomes, with each set consisting of three distinct enzymes. The classic PPAR alpha-regulated and inducible set participates in the beta-oxidation of straight-chain fatty acids, whereas the second noninducible set acts on branched-chain fatty acids. Long-chain and very-long-chain fatty acids are also metabolized by the cytochrome P-450 CYP4A omega-oxidation system to dicarboxylic acids that serve as substrates for peroxisomal beta-oxidation. Evidence derived from mouse models of PPAR alpha and peroxisomal beta-oxidation deficiency highlights the critical importance of the defects in PPAR alpha-inducible beta-oxidation in energy metabolism and in the development of steatohepatitis.

PMID:
11705737
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk