Send to:

Choose Destination
See comment in PubMed Commons below
Plant Cell. 2001 Nov;13(11):2513-23.

Abscisic acid activation of plasma membrane Ca(2+) channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants.

Author information

  • 1Division of Biology, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, California 92093-0116, USA.


The hormone abscisic acid (ABA) regulates stress responses and developmental processes in plants. Calcium-permeable channels activated by reactive oxygen species (ROS) have been shown recently to function in the ABA signaling network in Arabidopsis guard cells. Here, we report that ABA activation of these I(Ca) Ca(2)+ channels requires the presence of NAD(P)H in the cytosol. The protein phosphatase 2C (PP2C) mutant abi1-1 disrupted ABA activation of I(Ca) channels. Moreover, in abi1-1, ABA did not induce ROS production. Consistent with these findings, in abi1-1, H(2)O(2) activation of I(Ca) channels and H(2)O(2)-induced stomatal closing were not disrupted, suggesting that abi1-1 impairs ABA signaling between ABA reception and ROS production. The abi2-1 mutation, which lies in a distinct PP2C gene, also disrupted ABA activation of I(Ca). However, in contrast to abi1-1, abi2-1 impaired both H(2)O(2) activation of I(Ca) and H(2)O(2)-induced stomatal closing. Furthermore, ABA elicited ROS production in abi2-1. These data suggest a model with the following sequence of events in early ABA signal transduction: ABA, abi1-1, NAD(P)H-dependent ROS production, abi2-1, I(Ca) Ca(2)+ channel activation followed by stomatal closing.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk