Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2001 Oct 30;1507(1-3):5-31.

Structure of photosystem I.

Author information

  • 1Max Volmer Laboratorium für Biophysikalische Chemie Institut für Chemie, Technische Universität Berlin, Germany. fromme@phosis1.chem.tu-berlin.de

Abstract

In plants and cyanobacteria, the primary step in oxygenic photosynthesis, the light induced charge separation, is driven by two large membrane intrinsic protein complexes, the photosystems I and II. Photosystem I catalyses the light driven electron transfer from plastocyanin/cytochrome c(6) on the lumenal side of the membrane to ferredoxin/flavodoxin at the stromal side by a chain of electron carriers. Photosystem I of Synechococcus elongatus consists of 12 protein subunits, 96 chlorophyll a molecules, 22 carotenoids, three [4Fe4S] clusters and two phylloquinones. Furthermore, it has been discovered that four lipids are intrinsic components of photosystem I. Photosystem I exists as a trimer in the native membrane with a molecular mass of 1068 kDa for the whole complex. The X-ray structure of photosystem I at a resolution of 2.5 A shows the location of the individual subunits and cofactors and provides new information on the protein-cofactor interactions. [P. Jordan, P. Fromme, H.T. Witt, O. Klukas, W. Saenger, N. Krauss, Nature 411 (2001) 909-917]. In this review, biochemical data and results of biophysical investigations are discussed with respect to the X-ray crystallographic structure in order to give an overview of the structure and function of this large membrane protein.

PMID:
11687205
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk