Display Settings:

Format

Send to:

Choose Destination
Nat Neurosci. 2001 Dec;4(12):1187-93.

Synapsin dispersion and reclustering during synaptic activity.

Author information

  • 1Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.

Abstract

Presynaptic modulation of synaptic transmission provides an important basis for control of synaptic function. The synapsins, a family of highly conserved proteins associated with synaptic vesicles, have long been implicated in the regulation of neurotransmitter release. However, direct physiological measurements of the molecular mechanisms have been lacking. Here we show that in living hippocampal terminals, green fluorescent protein (GFP)-labeled synapsin Ia dissociates from synaptic vesicles, disperses into axons during action potential (AP) firing, and reclusters to synapses after the cessation of synaptic activity. Using various mutated forms of synapsin Ia that prevent phosphorylation at specific sites, we performed simultaneous FM 4-64 measurements of vesicle pool mobilization along with synapsin dispersion kinetics. These studies indicate that the rate of synapsin dispersion is controlled by phosphorylation, which in turn controls the kinetics of vesicle pool turnover. Thus synapsin acts as a phosphorylation-state-dependent regulator of synaptic vesicle mobilization, and hence, neurotransmitter release.

Comment in

  • Spreading synapsins. [Nat Neurosci. 2001]
PMID:
11685225
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk