Format

Send to:

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2001 Nov;67(11):5143-53.

Bacteria and Archaea physically associated with Gulf of Mexico gas hydrates.

Author information

  • 1Geology and Planetary Sciences Division, California Institute of Technology, Pasadena, California 91125, USA. brian.lanoil@ucr.edu

Abstract

Although there is significant interest in the potential interactions of microbes with gas hydrate, no direct physical association between them has been demonstrated. We examined several intact samples of naturally occurring gas hydrate from the Gulf of Mexico for evidence of microbes. All samples were collected from anaerobic hemipelagic mud within the gas hydrate stability zone, at water depths in the ca. 540- to 2,000-m range. The delta(13)C of hydrate-bound methane varied from -45.1 per thousand Peedee belemnite (PDB) to -74.7 per thousand PDB, reflecting different gas origins. Stable isotope composition data indicated microbial consumption of methane or propane in some of the samples. Evidence of the presence of microbes was initially determined by 4,6-diamidino 2-phenylindole dihydrochloride (DAPI) total direct counts of hydrate-associated sediments (mean = 1.5 x 10(9) cells g(-1)) and gas hydrate (mean = 1.0 x 10(6) cells ml(-1)). Small-subunit rRNA phylogenetic characterization was performed to assess the composition of the microbial community in one gas hydrate sample (AT425) that had no detectable associated sediment and showed evidence of microbial methane consumption. Bacteria were moderately diverse within AT425 and were dominated by gene sequences related to several groups of Proteobacteria, as well as Actinobacteria and low-G + C Firmicutes. In contrast, there was low diversity of Archaea, nearly all of which were related to methanogenic Archaea, with the majority specifically related to Methanosaeta spp. The results of this study suggest that there is a direct association between microbes and gas hydrate, a finding that may have significance for hydrocarbon flux into the Gulf of Mexico and for life in extreme environments.

PMID:
11679338
[PubMed - indexed for MEDLINE]
PMCID:
PMC93283
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk