Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem J. 2001 Nov 1;359(Pt 3):583-9.

AtPIP5K1, an Arabidopsis thaliana phosphatidylinositol phosphate kinase, synthesizes PtdIns(3,4)P(2) and PtdIns(4,5)P(2) in vitro and is inhibited by phosphorylation.

Author information

  • 1Department of Plant Biochemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden.

Abstract

PtdIns phosphate kinases (PIPkins), which generate PtdInsP(2) isomers, have been classified into three subfamilies that differ in their substrate specificities. We demonstrate here that the previously identified AtPIP5K1 gene from Arabidopsis thaliana encodes a PIPkin with dual substrate specificity in vitro, capable of phosphorylating PtdIns3P and PtdIns4P to PtdIns(3,4)P(2) and PtdIns(4,5)P(2) respectively. We also show that recombinant AtPIP5K1 is phosphorylated by protein kinase A and a soluble protein kinase from A. thaliana. Phosphorylation of AtPIP5K1 by protein kinase A is accompanied by a 40% inhibition of its catalytic activity. Full activity is recovered by treating phosphorylated AtPIP5K1 with alkaline phosphatase.

PMID:
11672432
PMCID:
PMC1222179
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk