Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Immunol. 2001 Oct 15;167(8):4261-70.

Resting and activation-dependent ion channels in human mast cells.

Author information

  • 1Division of Respiratory Medicine, Institute for Lung Health, University of Leicester, Leicester, United Kingdom.


The mechanism of mediator secretion from mast cells in disease is likely to include modulation of ion channel activity. Several distinct Ca(2+), K(+), and Cl(-) conductances have been identified in rodent mast cells, but there are no data on human mast cells. We have used the whole-cell variant of the patch clamp technique to characterize for the first time macroscopic ion currents in purified human lung mast cells and human peripheral blood-derived mast cells at rest and following IgE-dependent activation. The majority of both mast cell types were electrically silent at rest with a resting membrane potential of around 0 mV. Following IgE-dependent activation, >90% of human peripheral blood-derived mast cells responded within 2 min with the development of a Ca(2+)-activated K(+) current exhibiting weak inward rectification, which polarized the cells to around -40 mV and a smaller outwardly rectifying Ca(2+)-independent Cl(-) conductance. Human lung mast cells showed more heterogeneity in their response to anti-IgE, with Ca(2+)-activated K(+) currents and Ca(2+)-independent Cl(-) currents developing in approximately 50% of cells. In both cell types, the K(+) current was blocked reversibly by charybdotoxin, which along with its electrophysiological properties suggests it is carried by a channel similar to the intermediate conductance Ca(2+)-activated K(+) channel. Charybdotoxin did not consistently attenuate histamine or leukotriene C(4) release, indicating that the Ca(2+)-activated K(+) current may enhance, but is not essential for, the release of these mediators.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk