Send to:

Choose Destination
See comment in PubMed Commons below
Mol Endocrinol. 2001 Oct;15(10):1768-80.

Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor.

Author information

  • 1Cardiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.


PTP1B is a protein tyrosine phosphatase that negatively regulates insulin sensitivity by dephosphorylating the insulin receptor. Akt is a ser/thr kinase effector of insulin signaling that phosphorylates substrates at the consensus motif RXRXXS/T. Interestingly, PTP1B contains this motif (RYRDVS(50)), and wild-type PTP1B (but not mutants with substitutions for Ser(50)) was significantly phosphorylated by Akt in vitro. To determine whether PTP1B is a substrate for Akt in intact cells, NIH-3T3(IR) cells transfected with either wild-type PTP1B or PTP1B-S50A were labeled with [(32)P]-orthophosphate. Insulin stimulation caused a significant increase in phosphorylation of wild-type PTP1B that could be blocked by pretreatment of cells with wortmannin or cotransfection of a dominant inhibitory Akt mutant. Similar results were observed with endogenous PTP1B in untransfected HepG2 cells. Cotransfection of constitutively active Akt caused robust phosphorylation of wild-type PTP1B both in the absence and presence of insulin. By contrast, PTP1B-S50A did not undergo phosphorylation in response to insulin. We tested the functional significance of phosphorylation at Ser(50) by evaluating insulin receptor autophosphorylation in transfected Cos-7 cells. Insulin treatment caused robust receptor autophosphorylation that could be substantially reduced by coexpression of wild-type PTP1B. Similar results were obtained with coexpression of PTP1B-S50A. However, under the same conditions, PTP1B-S50D had an impaired ability to dephosphorylate the insulin receptor. Moreover, cotransfection of constitutively active Akt significantly inhibited the ability of wild-type PTP1B, but not PTP1B-S50A, to dephosphorylate the insulin receptor. We conclude that PTP1B is a novel substrate for Akt and that phosphorylation of PTP1B by Akt at Ser(50) may negatively modulate its phosphatase activity creating a positive feedback mechanism for insulin signaling.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk