Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biol Reprod. 2001 Oct;65(4):1038-49.

Interferon regulatory factor-two restricts expression of interferon-stimulated genes to the endometrial stroma and glandular epithelium of the ovine uterus.

Author information

  • 1Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA.

Abstract

Interferon tau (IFNtau) is the signal for maternal recognition of pregnancy in ruminants. The positive effects of IFNtau on IFN-stimulated gene (ISG) expression are mediated by ISG factor 3 (ISGF3), which is composed of signal transducer and activator of transcription (Stat) 1, Stat 2, and IFN regulatory factor-9 (IRF-9), and by gamma-activated factor (GAF), which is a Stat 1 homodimer. Induction of ISGs, such as ISG17 and 2',5'-oligoadenylate synthetase, by IFNtau during pregnancy is limited to the endometrial stroma (S) and glandular epithelium (GE) of the ovine uterus. The IRF-2, a potent transcriptional repressor of ISG expression, is expressed in the luminal epithelium (LE). This study determined effects of the estrous cycle, pregnancy, and IFNtau on expression of Stat 1, Stat 2, IRF-9, IRF-1, and IRF-2 genes in the ovine endometrium. In cyclic ewes, Stat 1, Stat 2, IRF-1, and IRF-9 mRNA and protein were detected at low levels in the S and GE. During pregnancy, expression of these genes increased only in the S and GE. Expression of IRF-2 was detected only in the LE and superficial GE (sGE) of both cyclic and pregnant ewes. In cyclic ewes, intrauterine administration of IFNtau stimulated Stat 1, Stat 2, IRF-9, and IRF-1 expression in the endometrium. Ovine IRF-2 repressed transcriptional activity driven by IFN-stimulated response elements that bind ISGF3, but not by gamma-activation sequences that bind GAF. These results suggest that IRF-2 in the LE and sGE restricts IFNtau induction of ISGs to the S and GE. In the S and GE, IFNtau hyperactivation of ISG expression likely involves formation and actions of the transcription factors ISGF3 and, perhaps, IRF-1.

PMID:
11566724
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk