Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2001 Oct;21(20):7105-14.

The modified human DNA repair enzyme O(6)-methylguanine-DNA methyltransferase is a negative regulator of estrogen receptor-mediated transcription upon alkylation DNA damage.

Author information

  • 1Chemical Carcinogenesis Laboratory, Institute of Molecular and Cell Biology, National University of Singapore, Singapore 117609, Republic of Singapore.

Abstract

Cell proliferation requires precise control to prevent mutations from replication of (unrepaired) damaged DNA in cells exposed spontaneously to mutagens. Here we show that the modified human DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (R-MGMT), formed from the suicidal repair of the mutagenic O(6)-alkylguanine (6RG) lesions by MGMT in the cells exposed to alkylating carcinogens, functions in such control by preventing the estrogen receptor (ER) from transcription activation that mediates cell proliferation. This function is in contrast to the phosphotriester repair domain of bacterial ADA protein, which acts merely as a transcription activator for its own synthesis upon repair of phosphotriester lesions. First, MGMT, which is constitutively present at active transcription sites, coprecipitates with the transcription integrator CREB-binding protein CBP/p300 but not R-MGMT. Second, R-MGMT, which adopts an altered conformation, utilizes its exposed VLWKLLKVV peptide domain (codons 98 to 106) to bind ER. This binding blocks ER from association with the LXXLL motif of its coactivator, steroid receptor coactivator-1, and thus represses ER effectively from carrying out transcription that regulates cell growth. Thus, through a change in conformation upon repair of the 6RG lesion, MGMT switches from a DNA repair factor to a transcription regulator (R-MGMT), enabling the cell to sense as well as respond to mutagens. These results have implications in chemotherapy and provide insights into the mechanisms for linking transcription suppression with transcription-coupled DNA repair.

PMID:
11564893
[PubMed - indexed for MEDLINE]
PMCID:
PMC99886
Free PMC Article

Images from this publication.See all images (6)Free text

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk